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The Younger Dryas Stadial (YDS; ∼12,900–11,600 y ago) in the
Northern Hemisphere is classically defined by abrupt cooling and
renewed glaciation during the last glacial–interglacial transition.
Although this event involved a global reorganization of atmo-
spheric and oceanic circulation [Denton GH, Alley RB, Comer GC,
Broecker WS (2005) Quat Sci Rev 24:1159–1182], the magnitude,
seasonality, and geographical footprint of YDS cooling remain un-
resolved and pose a challenge to our understanding of abrupt
climate change. Here, we present a deglacial chronology from
Scotland, immediately downwind of the North Atlantic Ocean, in-
dicating that the Scottish ice cap disintegrated during the first half
of the YDS. We suggest that stratification of the North Atlantic
Ocean resulted in amplified seasonality that, paradoxically, stimu-
lated a severe wintertime climate while promoting warming sum-
mers through solar heating of the mixed layer. This latter process
drove deglaciation of downwind landmasses to completion well
before the end of the YDS.

Determining the causes of abrupt climate change remains an
outstanding question of paleoclimatology, the answer to

which involves resolving the timing, magnitude, and geographic
extent of past abrupt climate events. The Younger Dryas Stadial
(YDS) is widely considered the canonical example of abrupt
climate change. Mean annual temperatures in the circum-North
Atlantic returned to near-full glacial values for ∼1,300 y before
rising 5–10 °C within a few years to decades (1, 2). This dramatic
cooling has been correlated with renewed glaciation throughout
the Northern Hemisphere, particularly in the circum-North
Atlantic. In Europe, for instance, the YDS has been assumed to
be synonymous with the most extensive glacier advances of the
late glacial (3–7). The extreme temperatures of the stadial have
been attributed to stratification of the North Atlantic water
column and shutdown of meridional overturning circulation
(MOC) (8), in addition to the spread of wintertime sea ice and
shifting westerly airflow (9). However, although the North At-
lantic remains a key player in hypotheses for the YDS, recent
developments are refining our view of the event’s full manifes-
tation. Mean annual temperatures recorded in the Greenland ice
cores were skewed toward strong wintertime cooling, due to the
effect of expanded North Atlantic winter sea ice (10). Conversely,
summer atmospheric temperatures, which dominate glacier mass
balance, probably were milder than previously thought (10, 11–
13). Thus the North Atlantic may have exhibited the hallmarks of
a “continental climate” during the YDS, which, if true, has im-
portant implications regarding the role of highly seasonal North
Atlantic stadial events in facilitating, rather than stalling, re-
cession of adjacent ice masses. We address this problem by pre-
senting a chronology of glacial activity immediately downwind of
the North Atlantic in Scotland.
Glaciers are sensitive to small changes in climate, particularly

temperature and precipitation. In western Europe, where cli-
mate is dominated by the ameliorating effect of the North At-
lantic Current, glaciers are highly responsive to upwind sea-
surface temperatures (SI Text), and past glacier behavior would
have been dominated by North Atlantic sea-surface conditions.

Thus the Scottish glacial record is ideal for reconstructing late
glacial variability in North Atlantic temperature (Fig. 1). The last
glacier resurgence in Scotland—the “Loch Lomond Advance”
(LLA)—culminated in a ∼9,500-km2 ice cap centered over
Rannoch Moor (Fig. 2A) and surrounded by smaller ice fields
and cirque glaciers. The ice cap was drained via calving tidewater
glaciers along its western margin and land-terminating glaciers
along its eastern margin. Well-preserved moraines indicate that
subsequent deglaciation was characterized by progressive, active
retreat rather than rapid downwasting (16, 17). In contrast to the
wealth of information constraining the physical characteristics of
the LLA, few data exist resolving the precise age of the event. and
there remains considerable uncertainty as to when the advance
began or when glaciers reached their maximum extent (18–20).
Nevertheless, the LLA traditionally is correlated with the YDS and
assumed to have culminated near the end of the stadial (5).
To derive an independent chronology of glacier recession

downwind of the North Atlantic, we mapped and dated glacial
deposits in the western sector of Rannoch Moor (56.636°N,
4.7732°W), located at the former center of the LLA ice cap, to
reconstruct the final stages of ice-cap retreat. End moraines of
up to 5 m relief define the northward recession of an active
ice front across the moor (∼300 m elevation), whereas chaotic
mounds located on broad uplands (∼400 m elevation) near the
moor’s center indicate final stagnation of remnant ice (Fig. 2B).
Previous investigations into the deglacial chronology of the site
invoked ice-free conditions at Rannoch Moor—and consequently
throughout Scotland—as early as 12,400 ± 330 calendar years
(cal yr) [sample SRR-1074 (21) (Dataset S1)] and no later than
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Resolving the full manifestation of past abrupt climate change
is key to understanding the processes driving and propagating
these events. As a principal component of global heat trans-
port, the North Atlantic Ocean also is susceptible to rapid dis-
ruptions of meridional overturning circulation and thus widely
invoked as a cause of abrupt climate variability in the Northern
Hemisphere. We assess the impact of one such North Atlantic
cold event—the Younger Dryas Stadial—on an adjacent ice
mass and show that, rather than instigating a return to glacial
conditions, this abrupt climate event was characterized by
deglaciation. We suggest this pattern indicates summertime
warming during the Younger Dryas, potentially as a function
of enhanced seasonality in the North Atlantic.
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12,150 ± 300 cal yr [sample BIRM-858 (21) (Dataset S1)]. This
scenario conflicts with the canonical view that glaciers in
Scotland collapsed in response to rapid warming at the end of
the YDS (as reviewed in ref. 20), suggesting instead that de-
glaciation was underway early in the stadial.
To address this discrepancy, we collected 13 sediment cores

from moraine-dammed bogs on Rannoch Moor (Fig. 2B and
Figs. S1–S3) and extracted organic material for 14C dating from
sediments immediately overlying the LLA till. Our independent
radiocarbon-based chronology is underpinned by 20 basal ages
derived from these water-lain postglacial sediments. Samples
consisted primarily of terrestrial plant macrofossils (Materials
and Methods and Fig. S4) that most likely were dislodged from

adjacent land surfaces (e.g., by slope processes, wind, rain, etc.)
and incorporated into nearby drainage, before being deposited
along with reworked minerogenic sediments in topographic
basins. Thus, terrestrial plant remains in these earliest postglacial
deposits typically do not reflect growth position. There is no
evidence (e.g., till, disturbance of sediments) in our cores for ice
overriding subsequent to deposition of the LLA till. Moreover,
the near-perfect preservation of the plant remains (Fig. S4)
argues against these macrofossils having been glacially reworked
from the pre-LLA landscape. Thus the earliest organics in our
cores represent the onset of postglacial plant colonization of
Rannoch Moor and provide a minimum limit on the age of
complete deglaciation of the LLA ice cap.

Results and Discussion
Radiocarbon ages are shown in Fig. 3 and are given in Dataset S1.
Ages from the lowermost macrofossils in each core range from
9,140 ± 180 to 10,550 ± 65 14C y, corresponding to 10,320 ±
270 to 12,480 ± 100 cal yr (Dataset S1). This nonnormal dis-
tribution is characteristic of minimum-limiting datasets and
confirms that the basal ages do not represent a single event (de-
glaciation) but a process: the progressive postglacial colonization
by plants of Rannoch Moor. Initial sparse vegetation is succeeded
over time by more extensive and continuous cover, a nonuniform
process which may have been complicated by the presence of
buried ice (SI Text). Thus the distribution of basal dates will be
skewed toward younger ages, whereas those more closely repre-
senting the onset of plant colonization will be relatively few (SI
Text). For this reason, because we want to examine the very first
occurrence of plant growth on Rannoch Moor—and thereby pro-
vide a close minimum-limiting age for deglaciation—we focus on
the oldest basal dates.
When did postglacial plant colonization of Rannoch Moor

begin? Here, we use several statistical approaches to establish
the basal radiocarbon age(s) most representative of that event.
First, following geologic convention (e.g., 22), we take the single
oldest age in our dataset as the closest constraint on deglaciation.
Sample OS-99685 (10,550 ± 65 14C y; Dataset S1), from the basal
section of core RM-12–3A, gives a weighted-mean calibrated age

N O R T H A T L A N T I C C U R R E N T
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   Moor

GISP2

Fig. 1. Surface temperature and heat transport in the North Atlantic Ocean.
The relatively mild European climate is sustained by warm sea-surface
temperatures and prevailing southwesterly airflow in the North Atlantic
Ocean (NAO), with this ameliorating effect being strongest in maritime
regions such as Scotland. Mean annual temperature (1979 to present) at
2 m above surface (image obtained using University of Maine Climate
Reanalyzer, www.cci-reanalyzer.org). Locations of Rannoch Moor and the
GISP2 ice core are indicated.
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Fig. 2. Extent of the LLA ice cap in Scotland and glacial geomorphology of western Rannoch Moor. (A) Maximum extent of the ∼9,500 km2 LLA ice cap and
larger satellite ice masses, indicating the central location of Rannoch Moor. Nunataks are not shown. (B) Glacial-geomorphic map of western Rannoch Moor.
Distinct moraine ridges mark the northward active retreat of the glacier margin (indicated by arrow) across this sector of the moor, whereas chaotic moraines
near Lochan Meall a’ Phuill (LMP) mark final stagnation of ice. Core sites are shown, including those (K1–K3) of previous investigations (14, 15).
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of 12,480 ± 100 cal yr, whereas the earliest probable (defined
here as the 90% confidence interval) age of that sample is 12,580
cal yr (Table 1, Fig. 4A, and Fig. S5). However, this widely used
approach raises the possibility of basing paleoclimatic inter-
pretations on a potentially “old” outlier sample. A second and
more conservative method is to use the oldest replicable dates as
a minimum age for deglaciation. Using χ2 statistics, we identified
the oldest replicable basal 14C ages in our dataset as samples OS-
99977, OS-99978, OS-89841, and OS-89842, all from the basal
4 cm of core RM-10–3A (SI Text, Fig. S1, and Dataset S1). This
statistically indistinguishable grouping [χ2 = (3, n = 4) = 7.6,
P = 7.8] has an error-weighted mean calibrated age of 12,262 ±
85 cal yr, which we take as a conservative date for the onset of
plant colonization (Fig. 4B and Fig. S6). However, at 90% confi-
dence, the earliest probable age for the first plants on Rannoch
Moor based on these ages is 12,493 cal yr (Fig. S6).
A third and broader-scale approach assesses the cumulative

probability of all eighteen basal ages. Because the nonnormal
distribution of this dataset precludes taking the mean as a close
minimum age for plant colonization (SI Text), we use the 90%
confidence interval to identify the earliest probable age represented

by this dataset as 12,371 cal yr (Table 1 and Fig. S7). Furthermore,
although 40% of the cumulative-probability curve lies <11.6 ka, this
distribution reflects the inclusion of basal ages that are considerably
younger than the onset of plant growth. Thus we argue that for this
analysis of all basal data the 90% value constrains most closely the
age of deglaciation.
Although there are several ways to establish the most repre-

sentative age for deglaciation using a minimum-limiting dataset
such as ours, we note that, regardless of approach, the outcome
does not change our conclusions. As shown in Table 1, the differ-
ence between the earliest probable age (12,580 cal yr) and our most
conservative estimate (12,262 ± 85 cal yr) is <400 y, reflecting the
consistency among our oldest basal ages. Furthermore, because
these ages represent the first vegetation to colonize Rannoch Moor
following deglaciation, they constitute a minimum-limiting age for
final disappearance of the LLA ice cap. Our chronology indicates
that deglaciation of Rannoch Moor was complete as early as
∼12,580 cal yr, but no later than ∼12,200 cal yr (Fig. 4). This in-
terpretation is reinforced by the tight agreement between our data
and existing minimum-limiting ages from Rannoch Moor (14, 15,
21) (Fig. 3 and Dataset S1).
Both “earliest” and “conservative” scenarios indicate that

Rannoch Moor was deglaciated by mid-YDS time (Fig. 4) and
therefore that the extensive ∼9,500-km2 LLA ice cap was gone
from the landscape at least 500 y before the end of the stadial.
These findings conflict with the prevailing view that glaciers
in Scotland advanced and maintained maximum positions through-
out much of the YDS, posing the question: What drove deglaciation
during a period of apparently severe North Atlantic cold? Further-
more, if the YDS was characterized by deglaciation, then when did
the LLA itself occur?
We consider two possible resolutions to the paradox of de-

glaciation during the YDS. First, declining precipitation over
Scotland due to gradually increasing North Atlantic sea-ice ex-
tent has been invoked to explain the reported shrinkage of gla-
ciers in the latter half of the YDS (18). However, this course of
events conflicts with recent data depicting rapid, widespread
imposition of winter sea-ice cover at the onset of the YDS (9),
rather than progressive expansion throughout the stadial. Fur-
thermore, considering the gradual active retreat of LLA glaciers
indicated by the geomorphic record, our chronology suggests
that deglaciation began considerably earlier than the mid-YDS,
when precipitation reportedly began to decline (18). Finally, our
cores contain lacustrine sediments deposited throughout the
latter part of the YDS, indicating that the water table was not
substantially different from that of today. Indeed, some recon-
structions suggest enhanced YDS precipitation in Scotland (24,
25), which is inconsistent with the explanation that precipitation
starvation drove deglaciation (26).
We prefer an alternative scenario in which glacier recession

was driven by summertime warming and snowline rise. We sug-
gest that amplified seasonality, driven by greatly expanded winter
sea ice, resulted in a relatively continental YDS climate for
western Europe, both in winter and in summer. Although sea-ice
formation prevented ocean–atmosphere heat transfer during the
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Table 1. Radiocarbon and calibrated age determinations for the minimum deglaciation-age
scenarios

Scenario Age (14C y)
Mean calibrated

age (cal yr)

Earliest probable
age at 90% confidence

(cal yr)

Single oldest age: OS-99685 10,550 ± 65 12,481 ± 95 12,580
Oldest replicable ages (n = 4): OS-99978,

OS-89842, OS-89841, OS-99977
10,394 ± 25 12,262 ± 85 12,493

All basal ages (n = 20) — — 12,371
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winter months (10), summertime melting of sea ice would have
imposed an extensive freshwater cap on the ocean surface (27),
resulting in a buoyancy-stratified North Atlantic. In the absence
of deep vertical mixing, summertime heating would be concen-
trated at the ocean surface, thereby increasing both North At-
lantic summer sea-surface temperatures (SSTs) and downwind
air temperatures. Such a scenario is analogous to modern con-
ditions in the Sea of Okhotsk (28) and the North Pacific Ocean
(29), where buoyancy stratification maintains considerable sea-
sonal contrasts in SSTs. Indeed, Haug et al. (30) reported higher
summer SSTs in the North Pacific following the onset of stratifi-
cation than previously under destratified conditions, despite the
growing presence of northern ice sheets and an overall reduction in
annual SST. A similar pattern is evident in a new SST record from
the northeastern North Atlantic, which shows higher summer
temperatures during stadial periods (e.g., Heinrich stadials 1 and 2)
than during interstadials on account of amplified seasonality (30).
The effects of stratification-driven summertime warming may

have been exacerbated by amplified seasonal shifts of the boreal
westerlies. Although the jet stream likely was stronger and more
zonal across the North Atlantic during YDS winters on account
of expanded sea-ice (9), retreat of the sea-ice edge during spring
and summer to a position north of Norway (31) could have fa-
cilitated a more meridional trajectory of the summertime jet,
resulting in incursions of warmer subtropical air masses to
Scotland. Additionally, YDS warming of the midlatitude North
Atlantic that arose as a consequence of curtailed MOC (32)
would have enhanced warming of subtropical air masses, poten-
tially stimulating summertime melting of downwind European
glaciers. Concurrently, increasing radiative heating due to maxi-
mum summer insolation, combined with rising atmospheric CO2
concentrations (33), could have dominated seasonal warming
and glacier recession during the YDS.
Regarding the timing of the LLA, our chronology provides

a firm minimum constraint for the event and shows deglaciation
of Rannoch Moor—and thus Scotland—was complete by at least
∼12,200 y ago. Although this scenario is supported by earlier
radiocarbon studies (14, 15, 21, 34), it is difficult to reconcile
with the paradigm of the LLA being driven by YDS cooling,
because that would require the accumulation and collapse of
a major ice cap within as little as 400 y. Indeed, one recent

assessment places the onset of the YDS closer to 12.7 ka (9),
further shortening the window of time available for a stadial-
driven advance. Such rapid build-up and decay of the ice cap is
inconsistent, however, with the abundance of geomorphic data
indicating deglaciation was dominated by gradual active retreat
rather than sudden stagnation (16, 17) and with recent modeled
reconstructions of the ice cap’s evolution forced by Greenland
temperature data (20). Thus in the context of our chronology we
suggest the LLA represents either (i) a relatively minor expansion
during the earliest YDS of a preexisting ice mass or (ii) a glacial
advance predating the YDS chronozone. The latter scenario is
consistent with an earlier interpretation of the Scottish record
suggesting an Allerød age for the LLA (34) and with the pre-YDS
advance of outlet glaciers in western Norway toward their maxi-
mum late glacial positions (35).
Our interpretation of the Rannoch Moor data, involving the

summer (winter) heating (cooling) effects of a shallow North
Atlantic mixed layer, reconciles full stadial conditions in the
North Atlantic with YDS deglaciation in Scotland. This scenario
might also account for the absence of YDS-age moraines at
several higher-latitude locations (12, 36–38) and for evidence of
mild summer temperatures in southern Greenland (11). Cru-
cially, our chronology challenges the traditional view of renewed
glaciation in the Northern Hemisphere during the YDS, partic-
ularly in the circum-North Atlantic, and highlights our as yet
incomplete understanding of abrupt climate change.

Materials and Methods
Macrofossils Used for 14C Measurements. Radiocarbon analyses were per-
formed primarily on plant material collected from basal sediments overlying
glacial till with a 5-cm-diameter Livingstone corer. Basal sediments comprise
finely laminated units of fine- and medium-grained sand and clay (Figs. S1–
S3), occasionally separated by thin lenses of gyttja, and exhibit abrupt
transitions into overlying organic-rich material. Overall concentrations of
organics in the minerogenic material are low, reflecting the sparsely vege-
tated nature of recently deglaciated terrain, and increase with distance up-
core. Macrofossils used in our analyses were dominated by terrestrial plant
species such as Rhacomitrium sp., Empetrum sp., Betula sp., Sphagnum sp.,
Pogonatum sp., and Vaccinium sp. (Fig. S4 and Dataset S1). Additionally,
species indicative of shallow aquatic environments include Potamogeton
sp., Chara sp., and Nitella sp. One sample (OS-93723) consisted entirely
of chitinous black beetle shell fragments. Sediments first were wet-sieved
to remove the fine-grained fraction, then inspected under a microscope.

11,000 12,000 13,000
Age (years BP)

18

YD
B

90%    12,493 cal yr 

conservative date
for onset of plant
colonization
[12,262 ±  85 cal yr]

n=4

Mean  10,394 ± 25    C yr
14

Mean  12,262 ± 85 cal yr

earliest probable 
date in group for 
onset of plant 
colonization
[12,493 cal yr]

11,000 12,000 13,000
Age (years BP)

-36

-42

-38

-40

A
YD

earliest probable 
date for onset of 
plant colonization
[12,580 cal yr]

n=1
90%  12,580 cal yr 

-36

-42
G

IS
P-

2 
δ 

  O
  (

‰
)

-38

-40

Fig. 4. Minimum-limiting ages for the final collapse of the LLA ice cap compared with the Greenland temperature record. (A) Sum-probability curve for the
single oldest basal age, shown in black, with 90% confidence interval (pink shading) and maximum probable age for plant colonization (red dashed line). This
age suggests Rannoch Moor was ice-free by 12,580 cal yr. (B) Sum-probability curve for the oldest replicable basal ages, showing both the oldest probable age
for plant colonization and the error-weighted mean (white line) with 2σ uncertainty (black bar). This calibrated mean age represents our conservative es-
timate for the final collapse of the LLA ice cap and indicates that Rannoch Moor was deglaciated no later than ∼12,200 cal yr. For comparison, the GISP2 δ18O
record (23) and YDS (blue shading) are shown.
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Macrofossils were extracted using tweezers and subsequently cleaned in
deionized water in an ultrasonic bath to remove any fine-grained minero-
genic residue that potentially could be a source of old carbon (39, 40). We
note that contamination by dissolved old carbon (the hard-water effect) is
unlikely to affect our samples due to the absence of carbonate lithologies in
the surrounding area and our preferential selection of terrestrial species for
radiocarbon analyses. Analyses were performed at the Keck–Carbon Cycle
Accelerator Mass Spectrometry Laboratory, University of California, Irvine,
and at National Ocean Sciences Accelerator Mass Spectrometry, Woods Hole
Oceanographic Institute. Radiocarbon dates were calibrated to calendar
years using OxCal v.4.2 (41, 42) and IntCal 09 (43).
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